## Comment on "Understanding the Epitaxial Growth of $Se_xTe_y$ @Te Core—Shell Nanorods and the Generation of Periodic Defects"

■ In their recent paper, Moon *et al.*<sup>1</sup> reported a solutionbased synthesis of Se<sub>x</sub>Te<sub>y</sub> nanorods and their subsequent epitaxial coating with Te shells. Transmission electron microscopy (TEM) study of these core-shell nanorods revealed periodic contrast oscillations (the term "periodic dark stripes" was used in the paper), which were misidentified by the authors as self-regulated periodic defects formed due to stress relaxation during cooling. They overlooked that these contrast oscillations exhibit all characteristics of a typical Moiré pattern, a well-known phenomenon encountered not only in TEM and other microscopic techniques, but also in optics, surface science, several other fields of physics, and even everyday life.<sup>2</sup> In TEM, such patterns can be observed when two overlapping crystals with nearly equal interplanar spacing and adequate mutual orientation are imaged.<sup>3</sup> As expected for Moiré patterns, TEM images of Se<sub>x</sub>Te<sub>v</sub>@Te nanorods show contrast oscillations in the core part only, that is, in the area where the Te shell and the  $Se_xTe_y$  core are superimposed. It is also known that Moiré patterns enhance the visibility of dislocations.<sup>4</sup> This phenomenon can be clearly seen in some of the TEM images shown in the paper. For instance, a few dislocations, seen as discontinuities of a Moiré pattern, can be observed in Figure 5B. These dislocations (and not, as the authors claim, the dark fringes) might indeed have been formed due to stress relaxation during cooling; however, they are not periodic. The paper does not include any diffraction data. Thus, analysis of the pattern becomes questionable. However, the assumption that it consists of a pure translational component originating from the (003) planes, that is, from the planes with interplanar spacing of 1.81 Å and 1.97 Å for the Se<sub>x</sub>Te<sub>y</sub> core and Te shell, respectively, leads to the Moiré spacing of 2.23 nm, which is in good agreement with the 2.42  $\pm$  0.15 nm value measured by the authors. This in turn, reinforces the identification of contrast oscillations as being a typical Moiré phenomenon.

## **REFERENCES AND NOTES**

- Moon, G. D.; Min, Y.; Ko, S.; Kim, S. W.; Ko, D. H.; Jeong, U. Understanding the Epitaxial Growth of Se<sub>x</sub>Te<sub>y</sub>@Te Core—Shell Nanorods and the Generation of Periodic Defects. ACS Nano 2010, 4, 7283–7292.
- 2. Amidror, I. The Theory of the Moiré Phenomenon; Springer: New York, 2000.
- Hirsch, P. B.; Howie, A.; Nicholson, R. B.; Pashley, D. W.; Whelan, M. J. Electron Microscopy of Thin Crystals; Plenum Press: New York, 1965; pp 169–170.
- Hirsch, P. B.; Howie, A.; Nicholson, R. B.; Pashley, D. W.; Whelan, M. J. Electron Microscopy of Thin Crystals; Plenum Press: New York, 1965; pp 371–377.

## Jacek B. Jasinski\*

Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, United States

\*Address correspondence to jacek.jasinski@louisville.edu. Received for review July 19, 2011

Published online September 27, 2011 10.1021/nn202730g

© 2011 American Chemical Society



